Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.Б.1	3 Теория автоматического управления
наименование	дисциплины (модуля) в соответствии с учебным планом
Направление подгото	вки / специальность
•	
15.03.06	МЕХАТРОНИКА И РОБОТОТЕХНИКА
Направленность (про-	филь)
15.03.06	МЕХАТРОНИКА И РОБОТОТЕХНИКА
· ·	
Форма обучения	енью
Год набора	2019

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили	
канд.техн.наук	, доцент, Смольников Алексей Петрович
	должность, инициалы, фамилия

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Изучение принципов построения и методов проектирования современных систем управления в робототехнике и мехатронике.

1.2 Задачи изучения дисциплины

Получение общекультурных профессиональных компетенций, приведенных в пункте 1.3.Изучаются основные принципы построения, анализа и синтеза систем автоматического управления, независимо от их назначения и физической природы. В настоящее время автоматические системы широко применяются во всех сферах производства и быта и требования к ним постоянно возрастают. Поэтому такие системы особенно объектах робототехники мехатроники, актуальны И К которым предъявляются высокие требования к качеству их работы.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Запланированные результаты обучения по дисциплине								
ОПК-2: владением физико-математическим аппаратом, необходимым для									
описания мехатронных и робототехнических систем									
ОПК-2: владением физико-	Построить математические модели системы								
математическим аппаратом,	автоматического управления в виде структурных								
необходимым для описания	схем и уравнений состояния								
мехатронных и									
робототехнических систем									
ПИ 1. от особухосту во состор ист	NOTONOTHINONING MOTORY MOVETNOMING W								

ПК-1: способностью составлять математические модели мехатронных и робототехнических систем, их подсистем и отдельных элементов и модулей, включая информационные, электромеханические, гидравлические, электрогидравлические, электронные устройства и средства вычислительной техники

ПК-1: способностью составлять математические модели мехатронных и робототехнических систем, их подсистем и отдельных элементов и модулей, включая информационные, электромеханические, гидравлические, электрогидравлические, электронные устройства и средства вычислительной техники

Принципы построения современных систем автоматического управления (САУ); виды математических моделей, отражающих динамические свой-ства САУ; основы метода пространства состояний, методы синтеза модальных регу-ляторов и принципы их реализации на основе наблюдающих устройств; математические модели и их особенности для импульсных и цифровых САУ Построить математические модели системы автоматического управления в виде структурных схем и уравнений состояния Математическим аппаратом теории непрерывных и дискретных САУ,

ПК-3: способностью разрабатывать экспериментальные макеты управляющих, информационных и исполнительных модулей мехатронных и робототехнических систем и проводить их экспериментальное исследование с

применением современных информационных технологий

ПК-3: способностью разрабатывать экспериментальные макеты управляющих, информационных и исполнительных модулей мехатронных и робототехнических систем и проводить их экспериментальное исследование с применением современных информационных технологий

методы исследования устойчивости, анализа и синтеза линейных систем; основы метода пространства состояний, методы синтеза модальных регу-ляторов и принципы их реализации на основе наблюдающих устройств; математические модели и их особенности для импульсных и цифровых САУ; исследовать устойчивость САУ и провести анализ динамических свойств системы; выполнить синтез САУ на основе предъявляемых требо-ваний со стороны технологического процесса; выполнить синтез модаль-ных регуляторов и наблюдателей для идентификации переменных состоя-ния системыВыполнить гармоническую линеаризацию для типовых нелинейных звень-ев; применять методы исследования нелинейных систем (гармонической линеаризации и гармонического баланса) для анализа автоколебательных режимов; выбрать метод для анализа процессов в нелинейной САУ в зави-симости от типа системы методами анализа устойчивости и точности непрерывных и дискретных САУ

ПК-5: способностью проводить эксперименты на действующих макетах, образцах мехатронных и робототехнических систем по заданным методикам и обрабатывать результаты с применением современных информационных технологий и технических средств

ПК-5: способностью проводить эксперименты на действующих макетах, образцах мехатронных и робототехнических систем по заданным методикам и обрабатывать результаты с применением современных информационных технологий и технических средств

методы исследования устойчивости, анализа и синтеза линейных систем; основы метода пространства состояний, методы синтеза модальных регу-ляторов и принципы их реализации на основе наблюдающих устройств; математические модели и их особенности для импульсных и цифровых САУ использовать современную вычислительную технику и программные про-дукты для анализа и синтеза САУ;

методами анализа устойчивости и точности непрерывных и дискретных САУ;

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется с применением ЭО и ДОТ

URL-адрес и название электронного обучающего курса: https://i.sfu-kras.ru/workgroups/group/1430/.

2. Объем дисциплины (модуля)

		C	ем
Вид учебной работы	Всего, зачетных единиц (акад.час)	1	2
Контактная работа с преподавателем:	2,5 (90)		
занятия лекционного типа	1 (36)		
лабораторные работы	1,5 (54)		
Самостоятельная работа обучающихся:	2,5 (90)		
курсовое проектирование (КП)	Нет		
курсовая работа (КР)	Да		
Промежуточная аттестация (Зачёт) (Экзамен)	1 (36)		

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.							
			Занятия		тия семин	Самостоятельная работа, ак. час.			
№ п/п Модули, темы (разделы) дисциплины	лекционного - типа		Семинары и/или Практические занятия		Лабораторные работы и/или Практикумы				
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1.00	сновные термины и определения								
	1. Введение. Предмет теории автоматического управления. Основные понятия и термины автоматического регулирования. Объекты управления и регулирования, регулируемые величины, регуляторы. Основные принципы управления.	2							
2. Aı	нализ и синтез линейных систем автоматического управ.	пения	Γ			Г	1	1	
	1. Типовые динамические звенья. Принцип расчленения САУ на элементы-звенья. Понятие о типовом динамическом звене. Безынерционное звено, апериодические звенья 1-го и 2-го порядков и колебательное звено. Дифференцирующие и интегрирующие звенья. Примеры, дифференциальные уравнения, переходные и передаточные функции, частотные характеристики типовых динамических звеньев.	2							

2. Статические и динамические режимы САУ. Статические характеристики элементов, входя-щих в САУ и их линеаризация. Характеристики динамических систем. Передаточная функция. Временные характеристики: переходная и функция веса. Связь между этими функциями. Прямое и обратное преобразования Лапласа и Фурье. Частотные характеристики динамических систем и их построение.	2				
3. Структурные схемы систем автоматического управления. Условные изображения и обозначения, применяемые в структурных схемах. Правила преобразования структурных схем при различных соединениях звеньев. Структурные схемы и передаточные функции одноконтурных и многоконтурных замкнутых систем. Типовые передаточные функции САУ по возмущающему, задающему воздействиям и ошибке регулирования.	2				
4. Устойчивость линеаризованных САУ. Понятие об устойчивости линейных систем. Теоремы Ляпунова. Критерии устойчивости. Алгебраические критерии Рауса и Гурвица. Частотные критерии Михайлова и Найквиста. Определение устойчивости по логарифмическим частотным характеристикам.	2				

5. Построение переходного процесса в САУ. Качество процессов регулирования. Общая характеристика методов расчета. Аналоговое и цифровое моделирование САУ. Пакет программ Simulink для объектно-визуального моделирования систем. Показатели качества: время регулирования, перерегулирование, установившиеся рассогласование. Запас устойчивости.	1				
6. Синтез линейных систем управления. Синтез последовательных и параллельных корректирующих устройств методом ЛАХ. Построение желаемой логарифмической характеристики. Наиболее распространенные корректирующие звенья. Реализация корректирующих звеньев. Пассивные и активные четырехполюсники.	3				
7. Ознакомление с системой Matlab			2		
8. Временные характеристики динамических звеньев			4		
9. Частотные характеристики динамических звеньев			4		
10. Анализ устойчивости систем автоматического регулирования			4		
11. Исследование линейных звеньев и системы автоматического управления			4		
12. Исследование характеристик ПИД- регуляторов			2		
13. Настройка параметров ПИД-регулятора на основе оптимизационного метода			4		

2							
2							
				4			
				4			
				4			
	2	2	2	2	4	4	4

1. Определение линейной импульсной САУ. Определение линейной импульсной САУ. Виды модуляции сигналов. Эквивалентная схема импульсной САУ.	2				
2. Устойчивость импульсных САУ. Понятие об устойчивости. Определение устойчивости по корням характеристического уравнения. Критерии устойчивости Гурвица, Михайлова и Найквиста.	2				
3. Расчет переходных процессов САУ. Коррекция импульсных систем. Методы расчета переходных процессов для импульсных САУ. Способы коррекции. Применение непрерывных и дискретных устройств для коррекции импульсных САУ. Условия конечной длительности переходного процесса. ЛЧХ импульсных САУ.	2				
4. Исследование линейной импульсной системы			4		
5. Исследование цифровых регуляторов			4		
6. Исследование цифровой САУ			4		
5. Нелинейные системы управления					
1. Определение нелинейной системы. Нелинейные звенья и способы их соединения. Понятие о нелинейной САУ. Особенности нелинейных систем. Типовые нелинейные звенья. Виды соединений и нейтрализации звеньев. Определение нелинейной системы. Нелинейные звенья и способы их соединения. Понятие о нелинейной САУ. Особенности нелинейных систем. Типовые нелинейные звенья. Виды соединений и нейтрализации звеньев.	2				

	_				
2. Методы исследования нелинейных САУ на основе принципа гармонической линеаризации. Метод гармонической линеаризации нелинейностей. Коэффициенты гармонической линеаризации релейных звеньев. Метод гармонического баланса. Условие гармонического баланса. Графоаналитический метод определения параметров автоколебаний.	2				
3. Метод гармонического баланса. Условие гармонического баланса. Графоаналитический метод определения параметров автоколебаний.	2				
4. Метод Ляпунова (второй). Понятие о знакоопределенных, знакопостоянных и знакопеременных функциях. Функция Ляпунова и её производная по времени. Формулировка теоремы Ляпунова в векторно-матричной форме.	2				
5. Абсолютная устойчивость нелинейных САУ. Понятие абсолютной устойчивости. Частотный критерий абсолютной устойчивости В. М. Попова.	2				
6. Система регулирования потребления тепловой энергии на основе теплорегулятора РТ-12			2		
7. Исследование нелинейной системы методом гармонической линеаризации			4		
8. Самостоят. работа				54	
9. Выполнение курсовой работы				36	
10. Подготовка к зачету					
11. Подготовка к экзамену					
Всего	36		54	90	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Ощепков А. Ю. Системы автоматического управления: теория, применение, моделирование в MATLAB: учебное пособие(Санкт-Петербург: Лань).
- 2. Первозванский А. А. Курс теории автоматического управления: учебное пособие(Санкт-Петербург: Лань).
- 3. Гайдук А. Р., Беляев В. Е., Пьявченко Т. А. Теория автоматического управления в примерах и задачах с решениями в MATLAB: учебное пособие(Санкт-Петербург: Лань).
- 4. Бесекерский В. А., Попов Е. П. Теория систем автоматического управления: учеб. пособие(Санкт-Петербург: Профессия).
- 5. Ким Д. П. Теория автоматического управления: Т. 2. Многомерные, нелинейные, оптимальные и адаптивные системы: учебник для студентов вузов(Москва: ФИЗМАТЛИТ).
- 6. Ким Д. П. Теория автоматического управления: Т. 1. Линейные системы: учебник для студентов вузов(Москва: ФИЗМАТЛИТ).
- 7. Босс В. Лекции по теории управления: Т. 1. Автоматическое регулирование (Москва: Либроком).
- 8. Смольников А. П. Теория автоматического управления. Линейные системы: учебное пособие(Красноярск: ИПЦ КГТУ).
- 9. Смольников А. П., Ткачев Н. Н., Сочнев А. Н. Теория автоматического управления: электрон. учеб.-метод. комплекс дисциплины(Красноярск).
- 10. Смольников А. П. Теория автоматического управления: лабораторный практикум [для студентов напр. 221000.62 «Мехатроника и робототехника», 140605.65 «Электротехнологические установки и системы», 140101.65 «Тепловые электрические станции»](Красноярск: СФУ).
- 4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):
- 1. Учебно-исследовательская система инженерных и научных расчетов Matlab 8.0
- 2. Пакеты программ для ПЭВМ для анализа и синтеза линейных, нелинейных и взаимосвязанных САУ.
 - 4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:
- 1. Не требуются

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Проведение занятий лекционного типа требует оснащение лекционного зала мультимедийным оборудованием (проектор, интерактивная доска) –ауд. Б-202.

Поведение лабораторных работ требует следующего оснащения: компьютерный класс, оснащенный компьютерами с необходимым программным обеспечением, приведенным в п. 9.1, и доступом в интернет; учебная лаборатория «Автоматическое управление и приводная техника» - ауд.Б-202.